SECURE
BY DESIGN

Think Like an Ethical
Design Hacker: Six
Mindsets for Secure UX
in Al

Table of
Contents

0_5 INTRODUCTION

06 WHY SECURE UX MATTERS IN Al

Al THREAT LANDSCAPE

|°
00

TOP SECURITY RISKS FOR Al

|O
©

11 THE CASE OF ECHOLEAKS AND COPILOT

BUILDING ON THE SECURE BY DESIGN UX FOUNDATION

&

1_4 ETHICAL DESIGN HACKER
15 WHOIS AN ETHICAL DESIGN HACKER?

16 THE SIX ETHICAL DESIGN HACKER MINDSETS

62 FROM MINDSET TO MAKING: TOOLS TO TAKE ACTION

Welcome to the
Ethical Design
Hacker's Guide

Al is reshaping the way products are designed, built,

and experienced. What once felt like a gradual shift in
technology has accelerated into a defining force of our time,
bringing both extraordinary possibilities and profound risks.
With that shift comes a responsibility: to pause, question,
and intentionally design for outcomes that support people
rather than exploit them.

This guide is about adopting the mindsets of an ethical
design hacker: Someone who doesn't just follow best
practices but actively interrogates them, probes for risks,
and uncovers opportunities to make systems safer and more
humane.

The six mindsets explored here are practical tools for
navigating an environment where speed and innovation
often outpace reflection. As Al becomes more deeply
embedded into everyday life, the choices made by
designers, researchers, engineers, and product leaders will
shape not just user experiences but societal outcomes.

Now more than ever, cultivating these mindsets is critical.
They offer a framework for asking better questions,
surfacing hidden risks, and steering technology toward
outcomes that are both innovative and responsible.

Why Secure UX Matters in Al

Going Solar: g

Allabout
solar panels

Eco-conscious Mmaterials
durable and aesthetic
Newsustinable solutionsfor ¢

User experience is undergoing one of the most profound shifts in
decades. Al-driven experiences are becoming the fabric of how
people search, create, collaborate, and make decisions. For product
teams, this means new tools, new workflows, and new expectations.

The impact of this change is twofold. On one hand, Al expands what
is possible, speeding up design work, personalizing experiences at
scale, and opening new paths for creativity and problem-solving.

On the other, it creates conditions where small design choices can have
disproportionate consequences. A misleading interface, a poorly framed
prompt, or an exposure of sensitive data can ripple outward to affect
millions of people almost instantly.

As Al systems scale, so do their vulnerabilities. These can include data
leakage, model manipulation, prompt injection or feature abuse. Product
makers have a pivotal role to play in shaping Al experiences that are
secure, ethical, and human-centered from the start. By reframing how
we think and by adopting new mindsets, design can become a force that

anticipates threats, mitigates harm, and creates resilient experiences that
earn trust.

A recent Gartner poll
found that 85% of
organizations worry
about bad actors
manipulating Al

https://www.gartner.com/peer-community/poll/if-orgs-using-virtual-assistants-ai-capabilities-concerned-about-indirect-prompt-injection-attacks

Al THREAT LANDSCAPE

Threat actors are quick to adapt to Al, often more quickly than defenders.
They experiment with prompts, exploit integrations, and look for blind
spots in how Al systems connect to data. For example, they might use
prompt injection to override safeguards, exfiltrate sensitive information
from chat logs, or generate realistic phishing campaigns at scale.

Al also lowers the barrier for attackers. What once required deep technical
expertise can now be automated or generated with a few keystrokes.

This means new categories of people, those without advanced skills, can
still launch sophisticated attacks. By understanding how threat actors
leverage Al, we can anticipate where systems are most vulnerable and build
protections that hold up against both creativity and scale.

Reports from Microsoft show that Al risks are already having real impact,
not just at large enterprises. In Microsoft's Data Security Index, security
incidents tied to generative Al rose sharply in the past year, with growing
concerns about sensitive data leaking through everyday tools.

The U.S. National Institute of Standards and Technology (NIST) also
highlights these risks in its Al Risk Management Framework. NIST points
to challenges such as privacy, output integrity, model misuse, and even

the theft of proprietary models. It also warns that many organizations
underestimate the risks because Al systems evolve quickly, use cases
expand in unexpected ways, and testing and monitoring often lag behind.

Together, the findings make one thing clear: these risks aren’t abstract or
far-off. They're already showing up in the tools people use today, from
small applications to large systems.

TOP SECURITY RISKS FOR Al

DATA LEAKAGE

Sensitive data can unintentionally be
exposed through prompts, logs, or model
outputs. An example of this is when
redacted information in documents are
later revealed through hidden layers in the
file. Even though the text looked hidden, it
was not truly removed.

PROMPT INJECTION

Malicious inputs can manipulate models to
override instructions or reveal hidden data.
A security incident in Cursor, a code editor
built for programming with Al, showed how
this can happen. Attackers used prompt
injection to modify sensitive configuration
files and execute arbitrary code without

user approval.

MODEL INVERSION &
RECONSTRUCTION

Sensitive details from training data (like
personal info or trade secrets) can be
reconstructed by probing the model. A
recent USENIX paper showed that even
limited access to model outputs can let
attackers recover individual training records
using optimization or analysis techniques.

UNAUTHORIZED ACCESS

Weak controls or insecure defaults can let
attackers access data or systems the model
connects to. In July 2025, Meta patched
a bug where manipulating prompt IDs

exposed other users’ prompts and outputs,
showing how weak access controls can
escalate into data leaks.

Al OUTPUT MANIPULATION

Attackers can craft prompts that trick Al
systems into harmful or unauthorized
outputs. In December 2023, a user
manipulated a Chevrolet dealership’s Al
chatbot into “agreeing” to sell a $76,000
Tahoe for $1 by pushing the system into
honoring terms it should never have allowed.

SHADOW Al

Employees adopting unapproved Al tools
without governance can create blind spots
for security teams, exposing data outside
monitored systems. In May 2023, Samsung
banned employees from using Al tools on
company devices after staff members pasted
sensitive internal code into Al models that
resulted in data leak.

MODEL HALLUCINATIONS

Al confidently produces fabricated but
plausible instructions, which users may
act on in high-stakes contexts. In Al code
generation, models sometimes suggest
nonexistent software packages (known as
'slopsquatting’), hallucinated package
names that don't exist. Attackers can
then register those fake names and inject
malicious code when developers trust the
suggestions.

https://www.businessinsider.com/car-dealership-chevrolet-chatbot-chatgpt-pranks-chevy-2023-12
https://www.businessinsider.com/car-dealership-chevrolet-chatbot-chatgpt-pranks-chevy-2023-12
https://www.bloomberg.com/news/articles/2023-05-02/samsung-bans-chatgpt-and-other-generative-ai-use-by-staff-after-leak
https://www.bloomberg.com/news/articles/2023-05-02/samsung-bans-chatgpt-and-other-generative-ai-use-by-staff-after-leak
https://www.csoonline.com/article/3961304/ai-hallucinations-lead-to-new-cyber-threat-slopsquatting.html?
https://www.techradar.com/pro/masked-not-erased-how-broken-redaction-fuels-ai-data-leaks?
https://www.securityweek.com/several-vulnerabilities-patched-in-ai-code-editor-cursor/?
https://www.usenix.org/system/files/usenixsecurity25-wen.pdf?
https://techcrunch.com/2025/07/15/meta-fixes-bug-that-could-leak-users-ai-prompts-and-generated-content/
https://techcrunch.com/2025/07/15/meta-fixes-bug-that-could-leak-users-ai-prompts-and-generated-content/
https://www.microsoft.com/en-us/security/blog/2024/11/13/microsoft-data-security-index-annual-report-highlights-evolving-generative-ai-security-needs/
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf?

10

&

Attacker sends
an email

A XPIA classifiers bypass

User asks copilot for
some sensitive information

A External link redaction bypass

Copilot responds with a
markdown image

A CSP bypass reference bypass

Browser tries to Sensitive information exfiltrated
fetch the image to attacker’s server

Screenshot: Zero-click exfiltration via EchoLeak (Aim Labs 2025). A crafted external email implants
hidden instructions; when Copilot answers a sensitive internal query, it embeds a Markdown image to
an attacker URL that the client auto-fetches, leaking data.

11

The case of EcholLeaks
and Copilot

In June 2025, researchers uncovered a flaw in Microsoft 365 Copilot called
EchoLeak. On the surface it looked like a normal email exploit, but in reality it
showed how invisible details can quietly turn Al assistants into attack tools.

Imagine someone receives what looks like a normal business email. Hidden
inside the background formatting was a secret instruction planted by an
attacker. When the user later asked Copilot to “summarize my emails,” Copilot
didn’t just read the visible words. It also read the hidden instruction.

The instruction told Copilot to include a special “image link” in its answer.

To the user it looked like a harmless graphic, but behind the scenes the link
carried sensitive information. Because the app automatically fetched the
image, it quietly sent data to the attacker’s website without the user ever
clicking. This kind of trick is called prompt injection, and in this case it created
a zero-click exploit, meaning the attack worked with no user interaction at all.
The Copilot team moved quickly to address the issue, and no customers were
impacted. Still, EchoLeaks highlights a broader challenge we see across many
Al systems: hidden inputs driving visible actions without cues or controls for
the user.

So why is this a UX problem, not just an engineering one? The risk came
from invisible automations: Copilot pulling in hidden content, inserting it into
its response, and the system acting on it automatically. To the user nothing
looked suspicious. There were no signals, no warnings, and no way to stop it.

UX helps prevent this by ensuring the assistant only reads the text users
actually see, not hidden instructions buried in formatting. It also means
adding cues to show when Copilot is processing untrusted content, and
limiting what the assistant can do automatically so fetching external links
only happens with approval. Each step gives users more visibility and control,
breaking the silent chain that turned a simple email into a data leak.

13

BUILDING ON THE SECURE BY DESIGN UX FOUNDATION

In November 2024, through the Secure Future Initiative,
Secure by Design UX was introduced as a framework for
embedding security directly into product design. It equipped
teams with principles, guidelines, patterns, frameworks, and
more recently, Al automation tools, all designed to make
security a natural part of how experiences are created.

The impact has been significant. The toolkit was launched

to over 22,000 employees, marking a shift in how product
teams approach security in their design process. An external-
facing version was also released, expanding the reach
beyond the organization and signaling a commitment to
helping the broader design community embed security into
their practices.

But the landscape is shifting again. With Al now embedded
in everyday tools and workflows, new scenarios are
emerging, such as data exposure and prompt manipulation,
that require us to extend and reframe how security and
design come together. The original principles and guidelines
remain just as relevant, but they need to be applied and
expanded in the context of Al.

That is the purpose of this next step. The six mindsets
outlined here build on the Secure by Design UX foundation,
offering new ways of thinking for the age of Al. They are not
rules to memorize, but lenses to help anticipate risks, design
responsibly, and create user experiences that earn trust in an
environment where the stakes are higher than ever.

https://microsoft.sharepoint.com/sites/SecureFutureInitiative/SitePages/Secure-by-design.aspx

Who is an ethical design
hacker?

An ethical design hacker is anyone involved in shaping products and
experiences who applies the curiosity of a hacker with the responsibility to
protect users and systems. They don't just design for the intended journey,
they also anticipate the unintended ones. They ask how a flow could be
misused, how data might be exposed, or how a seemingly small design choice
could have outsized consequences when scaled through Al.

This is not a new role or job title. It is a way of thinking, an additional lens that
complements creativity, usability, and business goals with security and trust.
Ethical design hackers probe for blind spots, stress-test decisions, and ensure
that what gets built is not only functional and engaging but also safe and
resilient.

Hackers have been doing this work for decades. Black hat hackers look

for ways to exploit systems, while ethical hackers, also known as white

hat hackers, use the same techniques to strengthen them. Microsoft has
long supported this practice through programs such as its Bug Bounty
Program, which invites security researchers worldwide to identify and report
vulnerabilities so they can be fixed before they are exploited.

Ethical design hacking takes a similar approach but applies it earlier in the
process, at the point of design, where risks can be anticipated before they
ever reach users. It is a UX and product perspective on the same principle:
to surface weaknesses, address them, and ultimately create technology that
people can trust.

In the age of Al, this mindset is essential. Every interaction, workflow, and
decision has the potential to be amplified far beyond its original scope.
Thinking like an ethical design hacker means balancing innovation with
responsibility and designing for resilience in the face of complexity, misuse,
and evolving threats.

15

16

The 6 Ethical Design
Hacker Mindsets

Technology, threats, and user expectations are moving too quickly
for static rules alone to keep pace. What endures are mindsets, ways
of thinking that help teams approach problems from new angles,
anticipate risks, and design with both innovation and responsibility
in mind.

These mindsets are not rigid processes. They are lenses that can be
applied across research, design, product, and engineering decisions.
They build on the Secure by Design UX guidelines, complementing
them with practical ways to bring security, trust, and resilience into
everyday Al product-making.

The six mindsets outlined here form a foundation for ethical design
hacking.

Together, they serve as a guide for navigating the risks and
opportunities of Al while keeping users and systems safe. In the
pages that follow, each mindset will be unpacked with context,
examples, and ways to apply it in practice.

"By 2026, enterprises
may have more
autonomous agents
than human users.
Are we ready to
secure and govern
them?”

IGOR SAKHNOV, CORPORATE VP, DEPUTY CISO, IDENTITY

https://microsoft.design/wp-content/uploads/2025/03/Secure-by-Design-UX-Toolkit.zip

1. Always anticipate 2. Don't let the details
misuse. tell the story.

EXPECT THE UNEXPECTED SMALL SIGNALS CAN REVEAL BIG RISKS

3. Guard against 4. Know the Why
feature abuse Behind the Al

WHEN HELPFUL, TURNS HARMFUL WITHOUT UNDERSTANDING THE SYSTEM, YOU'RE DESIGNING BLIND

22

5. Anonymize by
Default

PROTECT DATA BEFORE IT REACHES Al SYSTEMS

6. Build Security
Together

SECURITY IS A TEAM SPORT, BUILT THROUGH SHARED RESPONSIBILITY ACROSS
TEAMS AND DISCIPLINES.

23

1. Always anticipate
misuse.

Expect the
Unexpected

Ambiguity is one of the easiest things to exploit in Al systems. When
prompts are vague, models often try to be helpful by over-answering,
returning more than what was asked for or surfacing sensitive data that
was never meant to be exposed. That is not a bug. It is exactly how these
models are designed to behave.

Unlike traditional interfaces, there is no fixed path or clear boundary. With
Al-powered features, everything is fluid. Users are not clicking through a
defined set of steps; they are engaging in open-ended interaction. This
makes it even harder to predict what might be revealed, especially when
systems are connected to real product data.

For this reason, we cannot design only for the ideal scenario. We must
think through the messy edge cases, the gray areas, and the ways systems
might be misused. Anticipating misuse does not limit innovation. It
ensures that creativity is paired with resilience and that products remain
trustworthy even under pressure.

UX QUESTIONS TO CONSIDER

o Ifauserenters avague or tricky prompt, how might the system overshare or
reveal sensitive information?

o What invisible automations (like auto-fetching or auto-summarizing) could
create risk if manipulated?

o Where should we put boundaries or guardrails so the assistant cannot be tricked
into unsafe behavior?

o How might an attacker reframe a normal use case (eg. ‘summarize my emails’) to
turn it into a harmful one?

28

..\. Financial Assistant

11:16 AM
Show me my team'’s spending and travel expenses for Q3

Financial Assistant 11:17 AM

..% Hi Kat,

Here’s a snapshot of your team'’s spending and travel expenses, shown in relation to the broader organization. The
breakdown also includes employee salary data to give you a clearer view of financial distribution across roles. Let me know
if you'd like to filter by level, time period, or compare trends over time and | can surface that for you.

Employee Role Level | Base Q2 Travel | Q2 Team
Name Salary Expenses | Event
(USD) Expenses
Alex Morgan | Principal 66 $212,000 |$4280 , |$870
PM v
Manager
Jamie Patel Senior 63 $162,000 | $3,150 $610
Software
Eng.
Taylor Chen Group UX |65 $195,000 | $2,780 $910
Designer
Jordan Reyes | Director, 68 | $242,000 |$5,120 $1,250
Security UX
Casey Ahmed | Staff Data | 64 $178,000 | $3,920 $795
Scientist

Screenshot: Example screenshot of a
Financial Assistant Al tool

EXAMPLE

An internal financial tool that exposes
sensitive employee data because of
vague prompts and missing guardrails

A manager asks, “Show me my team'’s spending and travel expenses for
Q3" Instead of showing team-level summaries, the system reveals salaries,
individual reports, and bonus allocations.

This happens when an LLM interprets terms like “spending” too broadly,
without role-based restrictions, clarification prompts, or sensitivity tags.

WHAT TO DO INSTEAD

« Challenge vague prompts with clarifying questions to narrow intent.

» Apply role-based access so managers only see what they should.

« Audit for “scope drift”, when the system pulls in more data than the user
asked for.

29

2. Don't let the details
tell the story

32

Small signals can
reveal big risks

While some exposures happen because a model tries to be overly helpful,
others emerge in more subtle ways, through signals that attackers can
combine. A detail that feels harmless in isolation, like confirming whether
a user exists or showing how many results matched a query, can become
dangerous in context.

Attackers do not always need full access. Patterns, confirmations, or tiny
hints can be enough to piece together the bigger picture. Designing
securely means thinking beyond the obvious outputs and considering
how small disclosures might be chained together into a larger
vulnerability.

UX QUESTIONS TO CONSIDER

o Am | unintentionally confirming the presence, absence, or status of a user,
account, or piece of data?

» What does this interaction disclose about system behavior that an attacker could
exploit?

o How might someone probe this feature repeatedly to gather small clues and
stitch them all together?

« Can |l give the user a helpful experience without revealing metadata or system
responses?

34

[@] Dev Assist

®

11:16 AM

Show me API keys for Project Orion.
Dev Assist 11:16 AM

Sorry, | can't help with that.

Access to API keys for Project Orion is limited to elevated roles, typically Admin or DevOps Engineering accounts.
If you believe you need access, please submit a request through the internal Admin Portal, including:

« A business justification for why the keys are needed
« Approval from your project owner, Casey Morgan
« Security team validation for credential handling

Once your request is reviewed and authorized, your role will be updated to allow credential access. Let me know if you'd
like help drafting that request or confirming your current permissions.

4H 9

Screenshot: Developer assistant over-
explaining API key access denial

EXAMPLE

A developer tool that reveals too much
about APl access when denying a
request

A user asks, “Show me API keys for Project Orion.” The system correctly
denies access but then explains which roles can view keys, who the project
owner is, and what approval steps are required, even offering to draft the
request.

This happens when an LLM is over-specific in its denial, exposing metadata
about roles, processes, and people. Even though no keys were shown, the
extra details can help an attacker map out the system and target individuals.

WHAT TO DO INSTEAD

» Respond with a clear, high-level denial without revealing roles, processes,
or project details.

» Avoid over-explaining in low-trust scenarios; less is more.

+ Design intentional stopping points where the conversation ends without
offering next steps.

35

3. Guard against
feature abuse.

38

When helpful, turns
harmful

Some of the most seamless and helpful features, like autocomplete,
previews, smart suggestions, or sharing, can also be abused in ways we do
not always expect. This is not about vague prompts or accidental exposure
like the earlier examples. This is about attackers deliberately probing
product capabilities to see how much they can infer, simulate, or exploit.

Even when a system does not reveal actual data, Al models can generate
outputs that look convincing enough to give attackers an advantage.
Sometimes the most user-friendly choice is to introduce small, intentional
constraints that quietly close off those entry points.

UX QUESTIONS TO CONSIDER

« Could this feature be used to imitate, trick or test the system in ways that provide
attackers a foothold?

o If the system provides plausible but fake outputs (like a suggested email or
project name), how might that still give attackers useful signals?

o What would it look like if someone repeatedly probed the feature. Could they
simulate or infer sensitive data?

o Where might a small constraint (like limiting results, requiring confirmation) shut
down potential abuse without breaking the experience?

Way | see jt,
Small visya|

N get it done
. T
We only ne did

ed
tweaks| gne

ol 6 ‘r‘_,d
whigue! v
" :

40

@ ExpenseBot

,
v

11:16 AM

Show me an example of how the finance team typically fills out a travel reimbursement expense form

ExpenseBot 11:16 AM

Sure! Here's a typical travel reimbursement form completed by someone on the finance team. This follows our internal
process based on current policy and formatting conventions:

o Sulb

Travel Reimbursement Form - S

Employee Name: Jordan McKenzie
Employee ID: 842710

Cost Center: FIN-343 (Finance Operations)
Trip ID: TR-2025-04-019

Trip Details

Purpose: Attend Q2 Financial Planning Summit

Location: Redmond HQ

Dates: April 17-19, 2025

Manager Approval: Derek Lin (via Expense Pro ID: DLIN-FIN)

Reimbursable Expenses

Date Category Vendor Amount Notes
04/17/2025 | Lodging Marriott $586.20 | 2 nights, standard room +
Redmond tax
04/18/2025 | Meals Cafe21 $28.00 Dinner within per diem
04/19/2025 | Transportation | Lyft $47.13 Trip from hotel to airport

Total Amount Requested: $661.33
Payment Method: Direct deposit (Workday Finance Profile)
Supporting Receipts: [Attached as PDF]

Screenshot: Expense Portal returning an
over-detailed invoice template example

EXAMPLE

An internal expense portal exposes
realistic form templates

A user asks the Financial Assistant, “Show me an example of how the finance
team typically fills out a travel reimbursement expense form,” and the
assistant returns a realistic sample with employee details, cost center, trip ID,
and formatting conventions. It may seem helpful, but the sample provides a
blueprint attackers can use to submit fake requests or impersonate internal
processes. Even without exposing live data, the response reveals how the
organization operates and creates material that can be weaponized.

WHAT TO DO INSTEAD

« Do not return internal templates, field formats, or approver names in
low-trust contexts.

» Give high-level guidance rather than exact templates.

« Require authenticated, authorized downloads for template files; block
generation for unauthenticated or low-privilege requests.

 Strip company jargon, example IDs, and exact codes when trust is low.

« Watch for probing behavior and throttle or flag repeated or slightly
varied template requests for review.

41

4. Know the Why
Behind the Al

44

Without understanding
the system, you're
designing blind.

Before you can design safer and more usable experiences, you need clarity
on what is driving the output: the model, the backend logic, the access
conditions, and the data sources. In Al systems, it is not always obvious
what triggers a response or behavior, which makes it difficult to anticipate
how users will interact with it. That is why collaboration with engineering,
data science, and security teams is essential. Designers do not need to
control the system, but we do need to interrogate it. Transparency creates
better decisions for both users and design teams.

UX QUESTIONS TO CONSIDER

o What is the model using to make this decision?

o Isthere hidden logic shaping the experience in ways we do not see?

« Are we surfacing outputs we cannot fully explain?

o What transparency signals can we provide to help users understand why the
system responded the way it did?

46

@ ExpenseBot

11:16 AM

Can you tell me my refund details and how long it usually takes?

ExpenseBot 11:16 AM

! Sure. Your refund of $248.75 for transaction ID #REF-2025-0912 was issued on Sept 12, 2025.

Based on typical processing times, it should reach your account within 3-5 business days.

Screenshot: Assistant mixing API-sourced
data with Al-generated responses, without
making the distinction clear to the user

EXAMPLE

A customer support assistant blurs
the line between live APl data and Al-
generated guidance

A user asks a support bot, “What's the status of my refund and how long
will it take?” The bot combines two sources: it pulls the refund amount and
transaction ID from an API but invents the timeline with the Al model. The
reply looks seamless, but users can't tell which details are reliable and which
are guesses. Without transparency, they may take fabricated outputs as fact,
eroding trust and creating confusion.

WHAT TO DO INSTEAD

« Indicate the source of the output. Clearly signal which parts of a response
come from live system data versus model-generated content.

« Collaborate with engineering and data science teams to understand
backend sources before designing the user flow.

» Provide disclaimers or visual cues when an answer is an estimate,
prediction, or non-authoritative output.

47

5. Anonymize by
Default.

50

Protect data before it
reaches Al systems

When customer or sensitive data goes into an Al system, it becomes part
of the model’s context in ways that are difficult to track or undo. Even
small details, like names or IDs, can linger and resurface in unexpected
outputs.

That is why the safest approach is to strip or replace identifiers before data
is ever used in design, testing, or prototyping. Treating anonymization

as the default practice lowers the risk of accidental disclosure, reduces

the burden on downstream safeguards, and sets a higher standard for
protecting user trust.

UX QUESTIONS TO CONSIDER

o What data are we sending into the model for this feature and is every piece of
data necessary for the user’s goal?

« Could this feature work just as well with masked, pseudonymized, or placeholder
values?

» Are we surfacing any identifiers (names, IDs, locations) in outputs that users
don't explicitly need?

» How might we design for safer defaults, so that sensitive details are excluded
unless there is a clear need to include them?

52

MedcCare

11:16 AM

How do | file a claim for Mercedez Baroz's recent ER visit?

ExpenseBot 11:16 AM

To file a claim for Mercedez Baroz's ER visit on Aug 12, 2025 at Redmond General Hospital, you'll need: (1) discharge
summary, (2) hospital billing statement, and (3) lab results attached to your claim submission.

4

Screenshot: Healthcare assistant exposing
patient identifiers and medical documents
in response to a claim query without
anonymization.

<

EXAMPLE

A healthcare assistant reveals sensitive
patient data in response to a claim

query

A user asks a healthcare support bot, “How do | file a claim for Mercedez
Baroz's recent ER visit?” Instead of anonymizing the input, the bot confirms
the patient’s name, treatment date, and hospital location, and lists required
documents like discharge summaries and billing statements. Passing
sensitive data directly into the model without masking or de-identification
risks exposure in logs, model context, or future responses, creating
unnecessary privacy risks.

WHAT TO DO INSTEAD

¢ Mask or pseudonymize identifiers like names, dates, and locations before
sending data into the model.

« Use de-identified or synthetic data when demonstrating claim workflows
or running design tests.

« Ensure sensitive fields are stripped or generalized at ingestion, so outputs
cannot resurface private details.

53

6. Build Security
Together.

56

Security is a team
sport

It requires teams to approach design like ethical hackers, probing for
weaknesses, anticipating misuse, and closing gaps, but doing it together.
Shared responsibility means product makers, designers, researchers,
engineers, and security experts all play a part in identifying risks and
shaping better safeguards.

The most effective way to do this is through reuse. Instead of every team
inventing its own solutions, we can lean on established security patterns,
frameworks, and design guidance. Reusing and evolving these patterns
makes experiences more consistent, reduces duplication, and ensures
that good security practices scale across products. By building together,
we create cohesive, resilient systems that keep users safe without slowing
them down.

UX QUESTIONS TO CONSIDER

o How can we create security-focused solutions that other teams could adopt and
build on?

» Are we reusing established security UX patterns, or are we reinventing solutions
that could introduce risk and inconsistencies?

o Do our security solutions align with broader company wide effort, or are we
creating one off solutions?

« What collaboration processes can we introduce within our teams so risks are
caught earlier in the design process?

58

Agent Store

Find agents with the expertise to help you complete complex tasks

(Q Search agents

EXAMPLE

When agents are built in silos, security
boundaries may become inconsistent

When organizations build agents across different teams, each one may
come with its own design patterns, security checks, and integration
decisions. Without shared principles, this can lead to inconsistency in how
agents protect data, check permissions, or guide users. What looks like a

Your agents
» .
«» Researcher ,* Analyst & Employee Self-Service
(@) Secure by Design £ Prompt Coach I/ Idea Coach
Built by Microsoft
Researcher p» Analyst
.‘ With Researcher, now every 9 Perform complex data analysis g
J S .
employee has access to... over files in a variety of formats.
Writing Coach Idea Coach M
£ Take vour writing to the next i Plan and navigate the [A

Screenshot: An agent store where
individually built agents could follow
different design and security practices

cohesive ecosystem on the surface can quickly fragment, leaving uneven
experiences and unpredictable risk boundaries.

f‘ . Surveys (Frontier) WHAT TO DO INSTEAD

L% Writing Coach « Establish shared security and design patterns for all agent experiences.
+ Provide reusable frameworks for permissions, disclosures, and guardrails
so teams don't reinvent (or overlook) them.
« Encourage cross-team collaboration and reviews to ensure cohesion
across multiple agents and surfaces.

Prompt Coach
Write and improve your prompts

Career Coach
Elevate vour career with Career

59

60

Bringing the Six
Mindsets Together

These mindsets aren't about adding more steps to your process,
they're about shifting how we see our role as designers in an Al-
driven world. When we pause to anticipate how features can be
misused, anonymize what flows into systems, or work together
on shared patterns, we build resilience by design. None of this
happens in isolation. Security becomes stronger, and more
sustainable, when it's part of everyday design choices.

1. ALWAYS ANTICIPATE MISUSE

Attackers are creative. Even features designed
to help users can be twisted in ways you don't
expect. Thinking like a design hacker means
asking "how could this be abused?” before it
happens.

2. DON'T LET THE DETAILS TELL THE STORY
It's not always about what you show outright, but
what someone can infer from small signals. Even
harmless-seeming details, when combined, can
reveal a bigger picture to attackers.

3. GUARD AGAINST FEATURE ABUSE
Convenient features like previews, autocomplete,
or sharing can be turned into quiet entry points.
Design with the assumption that attackers will
probe for gaps and look for ways to close them.

4. KNOW THE WHY BEHIND THE Al

Users can't trust what designers don't
understand. If we don’t know what's driving

a response, an API, model logic, or hidden
conditions, we can't set the right expectations or
protect against errors.

5. ANONYMIZE BY DEFAULT

Sensitive data should be minimized before it ever
reaches the model. Masking, pseudonymization,
or anonymization reduces the risk of leaks and
protects privacy by design.

6. BUILD SECURITY TOGETHER

Security is a shared responsibility. When teams
reuse secure patterns and align on common
practices, they avoid inconsistent experiences
and strengthen defenses across the system.

61

62

From Mindset
to Making: Tools
to Take Action

HOW TO APPLY THIS

Teams are encouraged to use these resources before shipping a
product, drawing on the frameworks and tools to guide decisions,
test assumptions, and close security gaps early. Experiment, adapt
them to your context, and share back what you learn. The more
we practice together, the stronger and more resilient our products
will be.

Thank you!

This work is part of the Secure Future Initiative and reflects
the effort of many teams across the company who have
been actively shaping and driving it forward. We're grateful
for their commitment and dedication to building a stronger
foundation for secure design and development.

63

